Special symplectic Lie groups and hypersymplectic Lie groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie Algebras, Algebraic Groups, and Lie Groups

These notes are an introduction to Lie algebras, algebraic groups, and Lie groups in characteristic zero, emphasizing the relationships between these objects visible in their categories of representations. Eventually these notes will consist of three chapters, each about 100 pages long, and a short appendix. Single paper copies for noncommercial personal use may be made without explicit permiss...

متن کامل

Lie Algebras and Lie Brackets of Lie Groups–matrix Groups

The goal of this paper is to study Lie groups, specifically matrix groups. We will begin by introducing two examples: GLn(R) and SLn(R). Then in each section we will prove basic results about our two examples and then generalize these results to general matrix groups.

متن کامل

Symplectic Structures Associated to Lie-poisson Groups

The Lie-Poisson analogues of the cotangent bundle and coadjoint orbits of a Lie group are considered. For the natural Poisson brackets the symplectic leaves in these manifolds are classified and the corresponding symplectic forms are described. Thus the construction of the Kirillov symplectic form is generalized for Lie-Poisson groups. On leave of absence from LOMI, Fontanka 27, St.Petersburg, ...

متن کامل

Homogeneous symplectic manifolds of Poisson-Lie groups

Symplectic manifolds which are homogeneous spaces of Poisson-Lie groups are studied in this paper. We show that these spaces are, under certain assumptions, covering spaces of dressing orbits of the Poisson-Lie groups which act on them. The effect of the Poisson induction procedure on such spaces is also examined, thus leading to an interesting generalization of the notion of homogeneous space....

متن کامل

SEMINAR ON LIE GROUPS 1. Lie Groups

Example 1.3. (R,+) Example 1.4. S or T n = S × ...× S Example 1.5. Gl (n,F) ⊆ F, where F = R or C Example 1.6. E3 = isometries of R (2 connected components) Let the orthogonal group O3 < E3 be the subgroup that fixes the origin, and let the special orthogonal group SO (3) = SO3 < O3 be the orientation-preserving elements of O3. Visualizing SO (3): Let u be a vector of length l in R, correspondi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: manuscripta mathematica

سال: 2010

ISSN: 0025-2611,1432-1785

DOI: 10.1007/s00229-010-0375-z